percutaneous tracheostomy

indications

(i) Prolonged mechanical ventilation
(ii) 50-70% of tracheostomies in intensive care patients
(iii) Airway obstruction
(iv) Pulmonary toilet
(v) Prophylaxis (prior to head or neck resections)

techniques

PDT – Ciaglia Technique
- Developed 1985
- Dilational
- Seldinger Technique
- 'Blind' insertion (air bubbles in syringe to verify tracheal placement)
- Insertion in between cricoid and first tracheal ring
- Modified Ciaglia technique
- Insertion site more distal away from cricoid to prevent cartilage stenosis
- Bronchoscopic assistance (reduces complications from 16.8% to 8.3%)
- Single dilator instead of multiple dilators
- Currently standard of care
- Kost et al: prospective randomized trial of 500 patients showed overall complication rate of 9.2%, most commonly oxygen desaturation (2.8%) and bleeding (2.4%)
- Decanulation (1%) (80% on pt. with BMI > 30), infection (0.8%)
- Advantage: confirm correct needle placement, prevent posterior tracheal wall injury, prevent accidental extubation
- Disadvantage: impaired ventilation and oxygenation, additional personnel, increased cost and time

Rapitrach
- Developed by Schachner et al 1989
- Utilizes Seldinger Technique
- Blades of Dilating Tracheotome are slid over wire to dilate
- Increased risk of posterior tracheal wall injury
- Significantly more complications than Ciaglia technique

Griggs Technique
- Developed 1990
- Uses Seldinger Technique
- Blades of Dilating Tracheotome are slid over wire to dilate
- Increased risk of posterior tracheal wall injury
- Faster than Ciaglia
- Significantly more complications than Ciaglia technique

Translaryngeal Tracheostomy
- Described by Fanconi et al 1993
- Technique: the tracheostomy is passed through the larynx and upward through the anterior wall of the larynx
- Advantage: prevents pressure and damage to posterior wall
- Disadvantage: procedure more complicated (technique and airway management)

Percu Twist (2002)
- Single step screw dilator
- Seldinger Technique
- Does not compress anterior tracheal wall
- Decreased risk for posterior wall injury

contraindications

Absolute
(i) Emergency
(ii) Pediatric patient (<15 years)
(iii) Midline neck mass

Relative
(i) PEEP > 20
(ii) Uncorrected Coagulopathy
(iii) Obesity (obese or short neck)
(iv) Neck distortion (previous tracheostomy, scarring, haematoma, tumor, thyromegaly)
(v) Tracheomalacia
(vi) C-spine immobilisation (cervical fusion, rheumatoid arthritis, cervical instability)
(vii) Infection in the soft tissues of the neck

surgical vs percutaneous tracheostomy

1999 Dulguerov et al Crit Care Medicine
- open vs perc., PDT is heterogeneous group, concl.: (i) Giaglia+Bronch lowest complic among PDT, (ii) PDT lower post-op but higher periop complication

2000 Cheng et al Ann Otol Rhinol Laryngol open vs PDT, incl. 4 RCTs, concl.: (i) PDT lower risk of bleeding and infection, (ii) PDT+Bronch as safe as open tracheostomy

2000 Freeman et al Chest open vs PDT, ICU patients, Indication prolonged ventilation, well defined inclusion/exclusion criteria, incl SRCTs (236 pat.), concl.: (i) no overall difference in mortality rate, (ii) advantages of PDT shorter duration (9 mins), (iii) lower overall postop complications, (iv) lower bleeding rate

2006 Delaney et al Crit Care Med
- PDT vs open, extensive search, validity assessment for RCTs, - inclusion/exclusion criteria well defined, largest metaanalysis, 17 studies, 1212 pat., concl.: (i) PDT lower wound infection, (ii) no difference in bleeding and complication rates, (iii) PDT seems to be the choice for an elective ICU tracheostomy

2007 Higgins et al Laryngoscope
- PDT vs open, 15 studies (873 pat.), well defined incl/excl criteria, concl.: (i) PDT higher risk of accidental decanulation, (ii) lower risk of infection or unfavorable scarring, (iii) trend towards lower overall complication rate (OR=0.75, CI=0.56-1.0), (iv) no difference in reg of bleeding, subglottic stenosis, death; (v) PDT is faster (4.6 mins); (vi) PDT is cheaper (456 USD/pat), (vii) low conversion rate (7.7%)

patient selection

The ideal patient:
(i) Haemodynamically "stable"
(ii) FiO₂ < 0.6
(iii) PEEP < 10
(iv) Uncomplicated endotracheal intubation
(v) Lean patient with supple neck and prominent cervical landmarks (Palpable cricoid cartilage > 3 cm above sternal notch)

PDT – Ciaglia Technique
- Developed 1985
- Dilational
- Seldinger Technique
- ‘Blind’ insertion (air bubbles in syringe to verify tracheal placement)
- Insertion in between cricoid and first tracheal ring

Modified Ciaglia technique
- Insertion site more distal away from cricoid to prevent cartilage stenosis
- Faster than Ciaglia
- Significantly more complications than Ciaglia technique

Griggs Technique
- Developed 1990
- Uses Seldinger Technique
- Blades of Dilating Tracheotome are slid over wire to dilate
- Increased risk of posterior tracheal wall injury
- Faster than Ciaglia
- Significantly more complications than Ciaglia technique

Translaryngeal Tracheostomy
- Described by Fanconi et al 1993
- Technique: the tracheostomy is passed through the larynx and upward through the anterior wall of the larynx
- Advantage: prevents pressure and damage to posterior wall
- Disadvantage: procedure more complicated (technique and airway management)

Percu Twist (2002)
- Single step screw dilator
- Seldinger Technique
- Does not compress anterior tracheal wall
- Decreased risk for posterior wall injury

removal

- removal can be considered when:
 (i) there is an absence of upper airway obstruction (eg tracheal stenosis or granulation tissue)
 (ii) suctioning is becoming less frequent (2-4 hourly)
 (iii) the patient is co-operative & has a good cough
 (iv) the patient can protect their upper airway from aspiration
 (v) the oxygen requirement has decreased and the patient does not require invasive ventilation

patient selection

Absolute
(i) Emergency
(ii) Pediatric patient (<15 years)
(iii) Midline neck mass

Relative
(i) PEEP > 20
(ii) Uncorrected Coagulopathy
(iii) Obesity (obese or short neck)
(iv) Neck distortion (previous tracheostomy, scarring, haematoma, tumor, thyromegaly)
(v) Tracheomalacia
(vi) C-spine immobilisation (cervical fusion, rheumatoid arthritis, cervical instability)
(vii) Infection in the soft tissues of the neck

patient selection

The ideal patient:
(i) Haemodynamically "stable"
(ii) FiO₂ < 0.6
(iii) PEEP < 10
(iv) Uncomplicated endotracheal intubation
(v) Lean patient with supple neck and prominent cervical landmarks (Palpable cricoid cartilage > 3 cm above sternal notch)

PDT – Ciaglia Technique
- Developed 1985
- Dilational
- Seldinger Technique
- ‘Blind’ insertion (air bubbles in syringe to verify tracheal placement)
- Insertion in between cricoid and first tracheal ring

Modified Ciaglia technique
- Insertion site more distal away from cricoid to prevent cartilage stenosis
- Faster than Ciaglia
- Significantly more complications than Ciaglia technique

Griggs Technique
- Developed 1990
- Uses Seldinger Technique
- Blades of Dilating Tracheotome are slid over wire to dilate
- Increased risk of posterior tracheal wall injury
- Faster than Ciaglia
- Significantly more complications than Ciaglia technique

Translaryngeal Tracheostomy
- Described by Fanconi et al 1993
- Technique: the tracheostomy is passed through the larynx and upward through the anterior wall of the larynx
- Advantage: prevents pressure and damage to posterior wall
- Disadvantage: procedure more complicated (technique and airway management)

Percu Twist (2002)
- Single step screw dilator
- Seldinger Technique
- Does not compress anterior tracheal wall
- Decreased risk for posterior wall injury

removal

- removal can be considered when:
 (i) there is an absence of upper airway obstruction (eg tracheal stenosis or granulation tissue)
 (ii) suctioning is becoming less frequent (2-4 hourly)
 (iii) the patient is co-operative & has a good cough
 (iv) the patient can protect their upper airway from aspiration
 (v) the oxygen requirement has decreased and the patient does not require invasive ventilation

removal

- removal can be considered when:
 (i) there is an absence of upper airway obstruction (eg tracheal stenosis or granulation tissue)
 (ii) suctioning is becoming less frequent (2-4 hourly)
 (iii) the patient is co-operative & has a good cough
 (iv) the patient can protect their upper airway from aspiration
 (v) the oxygen requirement has decreased and the patient does not require invasive ventilation